Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(2): 228-251, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38050738

RESUMO

Alcohol dehydrogenases are a well-known group of enzymes in the class of oxidoreductases that use electron transfer cofactors such as NAD(P)+/NAD(P)H for oxidation or reduction reactions of alcohols or carbonyl compounds respectively. These enzymes are utilized mainly as purified enzymes and offer some advantages in terms of green chemistry. They are environmentally friendly and a sustainable alternative to traditional chemical synthesis of bulk and fine chemicals. Industry has implemented several whole-cell biocatalytic processes to synthesize pharmaceutically active ingredients by exploring the high selectivity of enzymes. Unlike the whole cell system where cofactor regeneration is well conserved within the cellular environment, purified enzymes require additional cofactors or a cofactor recycling system in the reaction, even though cleaner reactions can be carried out with fewer downstream work-up problems. The challenge of producing purified enzymes in large quantities has been solved in large part by the use of recombinant enzymes. Most importantly, recombinant enzymes find applications in many cascade biotransformations to produce several important chiral precursors. Inevitably, several dehydrogenases were engineered as mere recombinant enzymes could not meet the industrial requirements for substrate and stereoselectivity. In recent years, a significant number of engineered alcohol dehydrogenases have been employed in asymmetric synthesis in industry. In a parallel development, several enzymatic and non-enzymatic methods have been established for regenerating expensive cofactors (NAD+/NADP+) to make the overall enzymatic process more efficient and economically viable. In this review article, recent developments and applications of microbial alcohol dehydrogenases are summarized by emphasizing notable examples.


Assuntos
Álcool Desidrogenase , NAD , Álcool Desidrogenase/metabolismo , Oxirredução , Álcoois/química , Biocatálise
2.
Prep Biochem Biotechnol ; 53(7): 807-815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36384444

RESUMO

Docosahexaenoic acid (DHA) is an essential dietary supplement that is highly coveted due to its benefits for human health. Extensive research has been conducted for the sustainable commercial production of DHA by various strains in thraustochytrid family due to the accumulation of higher lipid content in the cells. The current study is focused on improving DHA production by investigating various key enzymes like glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme (ME), and ATP-citrate lyase (ACL) involved in DHA production using Thraustochytrium sp. T01. The growth of this strain was compared in batch and fed-batch mode. The fed-batch yielded better Dry cell weight (40 g L-1), lipid (27.75 g L-1 or 693 mg g-1 of DCW), and DHA contents (11.10 g L-1 or 277 mg g-1 of DCW). G6PDH activity increased 4-fold during the glucose fed-batch, but ME and ACL did not increase significantly. Furthermore, a study was conducted to determine the effects of organic acids (pyruvate and malate) on key enzyme activities. The addition of pyruvate increased the lipid content by 1.35-fold, and ACL activity by 10-fold as compared with control (without added organic acids). Malate addition into the culture media increased DHA content 1.4-fold, and ME activity increased 14-fold compared with control.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Humanos , Malatos , Piruvatos
3.
ACS Biomater Sci Eng ; 8(2): 708-721, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35060708

RESUMO

In this study, a pH-induced self-assembly-based method has been developed to form silk fibroin nanoparticles (SFN-2) with a higher drug loading capacity (21.0 ± 2.1%) and cellular uptake than that of silk fibroin particles produced by a conventional desolvation method (SFN-1). Using the self-assembly method, rifampicin-encapsulated silk fibroin nanoparticles (R-SFN-2) were prepared with a size of 165 ± 38 nm at an optimum pH of 3.8. In silico analysis reveals that at acidic pH, the amino acid side chain charge neutralization of acidic residues, especially GLU64, promotes the formation of additional favorable interactions between the silk fibroin and the drug. The SFN-2 also possess a good aerosol property with a mass median aerodynamic diameter of 3.82 ± 0.71 µm and fine particle fraction of 64.0 ± 1.4%. These SFN-2 particles were selectively endocytosed by macrophages through clathrin- and caveolae-mediated endocytosis with a higher uptake efficiency (66.2 ± 2.1%) and were found to exhibit a sustained drug release in the presence of macrophage intracellular lysates. The cytokine and biomarker expression analyses revealed that SFN-2 could exhibit an immunomodulatory effect by polarizing the macrophages to an initial M1 phase and later M2 phase. Further, R-SFN-2 also exhibited an enhanced and sustained intracellular antibacterial activity against Mycobacterium smegmatis-infected macrophages than free rifampicin. Thus, the self-assembled silk fibroin particles with immunomodulatory action combined with a good aerosol and intracellular drug release property can be an attractive choice as a carrier for developing pulmonary drug delivery systems.


Assuntos
Fibroínas , Preparações Farmacêuticas , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fibroínas/química , Fibroínas/farmacologia
4.
Biotechnol Rep (Amst) ; 31: e00664, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34557391

RESUMO

We report a stereospecific imine reductase from Candida parapsilosis ATCC 7330 (CpIM1), a versatile biocatalyst and a rich source of highly stereospecific oxidoreductases. The recombinant gene was overexpressed in Escherichia coli and the protein CpIM1 was purified to homogeneity. This protein belongs to the Ornithine cyclodeaminase/ µ-crystallin (OCD-Mu) family of proteins which has only a few characterized members. CpIM1 catalyzed the alkylamination of α-keto acids/esters producing exclusively (S)-N-alkyl amino acids/esters e.g. N-methyl-l-alanine with > 90% conversion and > 99% enantiomeric excess (ee). The enzyme showed the highest activity for the alkylamination of pyruvate and methylamine leading to N-methyl-l-alanine with an apparent KM of 15.04 ± 2.8 mM and Vmax of 13.75 ± 1.07 µmol/min/mg. CpIM1 also catalyzed (i) the reduction of imines e.g. 2-methyl-1-pyrroline to (S)-2-methylpyrrolidine with ∼30% conversion and 75% ee and (ii) the dehydrogenation of cyclic amino acids e.g. l-Proline (as monitered by reduction of cofactor NADP+ spectrophotometrically).

5.
Eur J Pharm Sci ; 135: 103-112, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31034983

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis has been one of the primal afflictions to human, and owing to the current scenario of drug resistance, newer drugs, and alternate targets are required to mitigate the disease. FtsZ is a GTP hydrolyzing protein, conserved in prokaryotes that plays a central role in Z-ring formation during cell division cytokinesis stage. This study employs the use of pharmacophore models derived from two different datasets based on Mtb-FtsZ GTPase inhibition and whole cell antibacterial activity, to virtually screen and shortlist novel compounds from In-house small molecule library as Mtb-FtsZ inhibitors and evaluate their in-vitro and ex-vivo activity. The results revealed Piperine (IC50 = 21.2 ±â€¯0.7 µM), 4-Bromo di-methoxy coumarin (IC50 = 13.0 ±â€¯1.6 µM) and Di-ethyl amino methyl coumarin (IC50 = 19.4 ±â€¯1.1) as potent Mtb-FtsZ GTPase inhibitors which showed considerable antibacterial activity (84.0 ±â€¯2.6 µM, 56.0 ±â€¯4.3 µM and 108 ±â€¯7.1 µM respectively) against M. smegmatis. They appear to be bacteriostatic, as well as treatment with these compounds led to a 3× increase in cell length of M. smegmatis. Further these molecules also altered the FtsZ gene expression by 3-fold when compared to untreated. In addition compound Aloin, an Aloe exudate showed potent Mtb-FtsZ inhibition (IC50 = 16.7 ±â€¯0.4 µM) but exhibited poor anti-mycobacterial activity (>500 µM).


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Alcaloides/farmacologia , Proteínas de Bactérias/genética , Benzodioxóis/farmacologia , Divisão Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Citocinese , Proteínas do Citoesqueleto/genética , Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos/métodos , GTP Fosfo-Hidrolases/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/citologia , Mycobacterium tuberculosis/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Relação Estrutura-Atividade
6.
Phytochemistry ; 156: 135-141, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30292877

RESUMO

Viola odorata L. (Violaceae), an Indian medicinal plant, contains a plethora of cyclotides, which are a class of cyclic peptides derived from plants, possessing several applications. Somatic embryo culture of V. odorata was developed, via indirect somatic embryogenesis, to serve as an alternative to natural plant biomass for sustainable and continuous production of its bioactive ingredients, such as cyclotides. Among the various combinations of phytohormones tested, Murashige and Skoog medium supplemented with 1 mg/l thidiazuron gave rise to the maximum frequency of induction (86.7%) and a high number of somatic embryos (3) from an embryogenic callus. Identification and characterization of cyclotides in the somatic embryos were carried out using a Fourier transform mass spectrometer coupled with liquid chromatography (LC-FTMS). Among the cyclotides identified in the study, few were found to be exclusively present in the somatic embryo culture. Furthermore, the relative abundance of the cyclotides was higher in somatic embryo extract than in the natural plant extract. The biological activities (cytotoxic, haemolytic and antimicrobial) of the somatic embryos and the parent plant were compared. Unlike the natural plants, the somatic embryo extracts demonstrated specificity i.e. they were found to be potent against cancerous cells but not against non-cancerous cell line or red blood cells. In contrast to the plant extract, the somatic embryos extracts were found to be potent against Escherichia coli and Staphylococcus aureus. These results suggest that somatic embryos of V. odorata (rich in cyclotides) can be used as an alternative to plant biomass for its therapeutic applications and germplasm conservation.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Ciclotídeos/farmacologia , Extratos Vegetais/farmacologia , Viola/metabolismo , Antibacterianos/biossíntese , Antibacterianos/química , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclotídeos/biossíntese , Ciclotídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/biossíntese , Extratos Vegetais/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Viola/química , Viola/embriologia
7.
Prep Biochem Biotechnol ; 48(7): 599-604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869944

RESUMO

The traditional source for docosahexaenoic acid (DHA) i.e. fish oil is currently being replaced by microbial sources due to the unpleasant odor and the risk of chemical contamination of fish. Thraustochytrium sp., marine microalgae-like protist is a known source of DHA. In our previous study, we reported a high yielding strain, T01, of Thraustochytrium sp. for DHA production isolated from the mangroves of South India. This strain shows promising yields of biomass and DHA. Shake flask study of T01 yielded 6.17 ± 0.04 gL-1 of DHA. In the present work, we report the effects of organic and inorganic salts on DHA production. Addition of organic salts such as sodium acetate, pyruvate, citrate and malate led to increase in the DHA content in T01 strain. The DHA content increased by 40-46% on addition of sodium salts of organic acids, while inorganic phosphates increased DHA by 33%. The total lipid content also increased (28-33%) with salts of organic acids and 28% with phosphate, but not as much as the increase in DHA. Addition of all the salts together did not show a significant increase in lipid and DHA contents as compared to the addition of individual salts.

8.
Phys Chem Chem Phys ; 19(28): 18494-18504, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28682382

RESUMO

Biocompatible and colloidally stable gold nanorods (GNRs) with well-defined plasmonic properties are essential for biomedical and theranostic applications. The as-synthesized GNRs using the seed-mediated method are stabilized by the surfactant, cetyltrimethylammonium bromide (CTAB), which is known for its cytotoxicity in many cell lines. Biocompatible GNRs synthesized using known protocols exhibit some extent of cytotoxicity and colloidal instability because of the incomplete removal of CTAB. We report a facile method for the efficient removal of CTAB molecules with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid molecules, which are naturally present in cell membranes. The kinetics of the ligand exchange process is studied using surface-enhanced Raman scattering (SERS) and corroborated with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. From colloidal stability studies using dynamic light scattering (DLS) and UV-Vis spectroscopy, the optimal lipid concentration and duration required for the successful ligand exchange of CTAB by DMPC are reported. Using thermogravimetric analysis, the surface concentration of DMPC on colloidally stable GNRs is found to be approximately 9 molecules per nm2. The 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays show that the surface-modified DMPC-GNRs have significantly better biocompatibility than those of CTAB-GNRs. Studies on the ligand exchange, colloidal stability and biocompatibility of DMPC-GNRs with aspect ratios ranging from 2.2 to 4.2 demonstrate the robustness of the proposed method. The results provide insights into the important factors to be considered while designing biocompatible GNRs suitable for applications in nanomedicine.


Assuntos
Materiais Biocompatíveis/química , Dimiristoilfosfatidilcolina/química , Ouro/química , Nanotubos/química , Células 3T3 , Animais , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cetrimônio , Compostos de Cetrimônio/química , Coloides/química , Difusão Dinâmica da Luz , Humanos , Células MCF-7 , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta , Análise Espectral Raman , Tensoativos/química , Termogravimetria , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
9.
J Nat Prod ; 80(7): 1972-1980, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28621949

RESUMO

Cyclotides are cyclic cystine knotted macrocyclic plant peptides that have several promising applications. This study was undertaken to detect and identify known and new cyclotides in Viola odorata, a commercially important medicinal plant, from three geographical locations in India. The number of cyclotides in the plant varied with the tissue (leaves, petioles, flowers, runners, and roots) and with geographical locations in India. Using liquid chromatography coupled to Fourier transform mass spectrometry (FTMS), 166 cyclotide-like masses were observed to display cyclotide-diagnostic mass shifts following reduction, alkylation, and digestion, and 71 of these were positively identified based on automated spectrum matching. Of the remaining 95 putative cyclotides observed, de novo peptide sequencing of three new cyclotides, namely, vodo I1 (1), vodo I2 (2), and vodo I3 (3), was carried out with tandem mass spectrometry.


Assuntos
Ciclotídeos/isolamento & purificação , Plantas Medicinais/química , Viola/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ciclotídeos/química , Índia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Folhas de Planta/química
10.
Org Biomol Chem ; 15(19): 4165-4171, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28440822

RESUMO

Candida parapsilosis ATCC 7330, a rich source of highly stereospecific oxidoreductases, catalyzes oxidation-reduction of a plethora of compounds yielding industrially important intermediates. An (S)-specific carbonyl reductase (SRED) purified and characterized from this yeast is reported here. (R)-Specific carbonyl reductase (CpCR) was reported by us earlier. SRED asymmetrically reduces ketones with excellent enantiospecificity (ee > 99%) and α-ketoesters with higher catalytic activity but moderate enantiospecificity (ee 70%) in the presence of NADPH. Minimal activity is shown towards the reduction of aldehydes. While the reduction of α-ketoesters with SRED can occur with either NADPH or NADH, for ketone reduction SRED requires NADPH specifically. SRED with a subunit molecular weight of 30 kDa shows optimal activity at pH 5.0 and 25 °C, and its activity is affected by Cu2+. Taken together, SRED and CpCR offer substrates which on asymmetric reduction give products of opposite absolute configurations.


Assuntos
Oxirredutases do Álcool/metabolismo , Candida parapsilosis/enzimologia , Coenzimas/metabolismo , Concentração de Íons de Hidrogênio , Estereoisomerismo , Especificidade por Substrato , Temperatura
11.
Phys Chem Chem Phys ; 19(10): 7288-7296, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28239716

RESUMO

Bathochromic and hypsochromic shifts in the photo-luminescent spectra of doped and functionalized carbon nano-dots (CDs) arise due to the complex interaction between CDs and the solvent molecules around them. Nitrogen-functionalized carbon nano-dots (N-CDs) were synthesized from citric acid and urea using microwave assisted hydrothermal methods. Optical studies (absorption and photoluminescence) from the as-synthesized N-CDs were carried out in polar protic, aprotic and non-polar solvents. When excited at 355 nm, blue photoluminescence (PL) was observed from the N-CDs dispersed in polar aprotic solvents while green emission was observed in polar protic solvents. In addition to the general solvent effect, the analysis of the luminescence spectra in protic solvents suggests that hydrogen bonding plays a crucial role in regulating the photophysical characteristics of the system. Temperature dependent PL studies and time correlated single photon counting experiments in various solvent dispersions of N-CDs support the role of hydrogen bonding. This indicates that these results depend on the specific interactions observed from the N-CDs and can be thought of as the primary driving force which is then followed by solvent properties like dipole moments. Both the Lippert-Mataga model and Kamlet-Taft parameters were used to support the photophysical properties observed from N-CDs.

12.
Sci Rep ; 6: 34344, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739423

RESUMO

Confocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC.


Assuntos
Candida parapsilosis/metabolismo , Catecóis/farmacologia , Catecóis/farmacocinética , Candida parapsilosis/citologia , Microscopia Confocal/métodos , Oxirredução/efeitos dos fármacos
13.
AMB Express ; 6(1): 92, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27718213

RESUMO

The cell free extracts of Candida parapsilosis ATCC 7330 are more efficient than the whole resting cells of the yeast in the synthesis of directly usable gold nanoparticles as revealed by this systematic study. Cell free extracts yielded gold nanoparticles of hydrodynamic diameter (50-200 nm). In this study, the total protein concentration influences the nanofabrication and not only the reductase enzymes as originally thought. Powder X-ray diffraction studies confirm the crystalline nature of the gold nanoparticles. Fourier Transform Infra Red spectroscopy and thermal gravimetric analysis suggests that the biosynthesized gold nanoparticles are capped by peptides/proteins. Dispersion experiments indicate a stable dispersion of gold nanoparticles in pH 12 solutions which is also confirmed by electron microscopic analysis and validated using a surface plasmon resonance assay. The effectiveness of the dispersed nanoparticles for the reduction of 4-nitrophenol using sodium borohydride as a reductant further confirms the formation of functional gold nanoparticles. It is also reported that gold nanoparticles with mean particle diameter of 27 nm are biosynthesized inside the whole cell by transmission electron microscopy analysis. With optimized reaction conditions, maximum gold bioaccumulation with the 24 h culture age of the yeast with cellular uptake of ~1010 gold atoms at the single cell level is achieved but it is not easy to extract the gold nanoparticles from the whole resting cells.

14.
Bioorg Chem ; 68: 187-213, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27544073

RESUMO

This review highlights the importance of the biocatalyst, Candida parapsilosis for oxidation and reduction reactions of organic compounds and establishes its versatility to generate a variety of chiral synthons. Appropriately designed reactions using C. parapsilosis effect efficient catalysis of organic transformations such as deracemization, enantioselective reduction of prochiral ketones, imines, and kinetic resolution of racemic alcohols via selective oxidation. This review includes the details of these biotransformations, catalyzed by whole cells (wild type and recombinant strains), purified enzymes (oxidoreductases) and immobilized whole cells of C. parapsilosis. The review presents a bioorganic perspective as it discusses the chemo, regio and stereoselectivity of the biocatalyst along with the structure of the substrates and optical purity of the products. Fermentation scale biocatalysis using whole cells of C. parapsilosis for several biotransformations to synthesize important chiral synthons/industrial chemicals is included. A comparison of C. parapsilosis with other whole cell biocatalysts for biocatalytic deracemization and asymmetric reduction of carbonyl and imine groups in the synthesis of a variety of enantiopure products is presented which will provide a basis for the choice of a biocatalyst for a desired organic transformation. Thus, a wholesome perspective on the present status of C. parapsilosis mediated organic transformations and design of new reactions which can be considered for large scale operations is provided. Taken together, C. parapsilosis can now be considered a 'reagent' for the organic transformations discussed here.


Assuntos
Oxirredutases do Álcool/metabolismo , Candida/metabolismo , Compostos Orgânicos/metabolismo , Oxirredutases/metabolismo , Biocatálise , Candida/citologia , Candida/enzimologia , Estrutura Molecular , Compostos Orgânicos/química , Oxirredução
15.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 11): o884-5, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26594579

RESUMO

In the title compound, C25H20O3, the central -C(=O)-C=C- chain is disordered over two positions about the central C atom, with an occupancy ratio of 0.848 (6):0.152 (6). The mol-ecule is twisted with the two naphthalene ring systems being inclined to one another by 52.91 (9)°. In the crystal, mol-ecules are linked by C-H⋯π inter-actions, forming a three-dimensional structure. The structure was refined as a two-component twin with a 180 ° rotation about the c* axis.

16.
J Biotechnol ; 209: 102-7, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26100234

RESUMO

We present an FTIR based assay to monitor the whole cell mediated oxidation of aryl alcohols by measuring the characteristic IR absorption of the hydroxyl group [OH] of the substrate and the carbonyl group [CO] of the corresponding oxidized product. This method expedites the analysis of whole cell mediated catalysis which is usually done by GC and/or HPLC. The FTIR assay had linearity with R(2)≥0.980 and sensitivity up to 10µM. The accuracy and precision of FTIR assay was found ≥81% and ≥94%, respectively. This assay was validated by GC which exhibited ≥82% accuracy and ≥79% precision. The time of analysis taken by this assay was 2-3min per sample in comparison with 20-40min by GC.


Assuntos
Álcoois/análise , Candida/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Candida/metabolismo , Catálise , Cromatografia Gasosa , Oxirredução
17.
J Ind Microbiol Biotechnol ; 42(2): 173-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25475754

RESUMO

Optically pure aliphatic ß-hydroxy esters were prepared from their racemates by deracemisation using the biocatalyst Candida parapsilosis ATCC 7330. High optical purity (up to >99 %) and good yields (up to 71 %) of the product secondary alcohols were obtained. This study highlights the importance of optimization of reaction conditions using ethyl-3-hydroxybutanoate as the model substrate to improve the enantioselectivity (enantiomeric excess from 9 to 98 %). The present study emphasises the broad substrate scope of the biocatalyst towards deracemisation. This is the first report of Candida parapsilosis ATCC 7330-mediated deracemisation of various alkyl-3-hydroxybutanoates to produce either the (R)-enantiomers (methyl, ethyl, propyl, butyl, t-butyl, allyl-3-hydroxybutanoates) or (S)-enantiomers (pentyl, iso-amyl and iso-propyl-3-hydroxybutanoates).


Assuntos
Biocatálise , Butiratos/química , Candida/metabolismo , Hidroxibutiratos/química , Ésteres , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Estereoisomerismo , Especificidade por Substrato
18.
Org Biomol Chem ; 12(26): 4682-90, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24866773

RESUMO

Various aryl and alkyl substituted optically pure propargyl alcohols were obtained with excellent ee (up to >99%) and isolated yields (up to 87%) by deracemization using whole cells of Candida parapsilosis ATCC 7330. The whole cells show substrate specificity towards alkyl substituted propargyl alcohols and a switch in the enantioselectivity has been observed from 'R' to 'S' upon increasing the chain length. For the first time, enantiopure (R)-4-(3-hydroxybut-1-ynyl)benzonitrile, (R)-4-(biphenyl-4-yl)but-3-yn-2-ol, (S)-ethyl 3-hydroxy-5-phenylpent-4-ynoate and (S)-4-phenylbut-3-yne-1,2-diol were obtained using this strategy. Optically pure propargyl alcohol thus obtained was used as a chiral starting material in the synthesis of enantiomerically enriched poly-substituted pyrrolidines and a pyrrole derivative successfully demonstrating a chemoenzymatic route.


Assuntos
Candida/citologia , Candida/enzimologia , Química Orgânica/métodos , Compostos Policíclicos/síntese química , Pirrolidinas/síntese química , Alcinos/química , Biocatálise , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Conformação Molecular , Compostos Policíclicos/química , Propanóis/química , Pirrolidinas/química , Estereoisomerismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-24681319

RESUMO

A reversal in solvatochromic behaviour was observed in second and third generation glycerol based dansylated polyether dendrons in water on addition of a second solvent like methanol or acetonitrile. Below a certain percentage of the nonaqueous solvent there is a negative-solvatochromism observed and above that there is a switch to positive-solvatochromism. The negative-solvatochromism is attributed to the progressive disaggregation of the dendron aggregates by the nonaqueous solvent component. Once the disaggregation process is complete, positive-solvatochromism is exhibited by the dendron monomers. Higher the hydrophobicity of the dendron more is the amount of the second solvent required for disaggregation.


Assuntos
Antracenos/química , Compostos de Dansil/química , Glicerol/química , Polímeros/química , Solventes/química
20.
Appl Biochem Biotechnol ; 171(3): 756-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892621

RESUMO

Asymmetric reduction of alkyl-3-oxobutanoates mediated by Candida parapsilosis ATCC 7330 resulted in optically pure alkyl-3-hydroxybutanoates in good yields (up to 72%) and excellent enantiomeric excess (up to >99 %). A detailed and systematic optimisation study was necessary and was carried out to avoid the undesired transesterification reaction during the course of asymmetric reduction. Under optimised conditions, the (S)-alkyl hydroxyesters were produced predominantly except for the methyl ester which formed the (R)-enantiomer. To the best of our knowledge, the biocatalytic asymmetric reduction of isoamyl-3-oxobutanoate to (S)-isoamyl-3-hydroxybutanoate is reported here for the first time.


Assuntos
Butiratos/metabolismo , Candida/metabolismo , Hidroxibutiratos/metabolismo , Biocatálise , Oxirredução , Solventes/farmacologia , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...